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Abstract— We present a novel control scheme for multiple
non-holonomic vehicles under uncertainty, which can guarantee
collision avoidance while complying with constraints imposed
on the vehicles. Dipolar Navigation Functions are used for
decentralized conflict-free control, while Model Predictive Con-
trol is used in a centralized manner in order to ensure that
the resulting trajectories remain feasible with respect to the
constraints present and to optimize the performance objectives.
The model used is chosen to resemble air traffic control
problems, with some uncertainty introduced in the system. The
efficiency of the control strategy is demonstrated by realistic
simulations.

I. INTRODUCTION

Navigation Functions (NF), introduced by Rimon and
Koditschek [1] as an improved potential field method, have
been used so far in a variety of problems, mainly in the robot-
ics field, for the control of single or multiple mobile vehicles.
The main advantage of Navigation Functions, compared to
most potential field methods, is the lack of any local minima,
which are a significant drawback of many potential field
methods. Control based on NFs offers a number of benefits,
most importantly it can provide provable convergence to
the desired configuration, as well as guaranteed collision
avoidance.

In its original form the NF methodology addressed prob-
lems involving a single robot and a number of stationery
obstacles. Following Rimon and Koditschek’s work, the orig-
inal framework has been extended to multiagent-multirobot
systems, both in centralized [2] and decentralized schemes
[3], as well as non-holonomic vehicles in single agent
[4] and multiagent [5] problems. In addition applications
include formation control [6], while lately an extension to
3-dimensional problems has been proposed [7].

While the NF methodology features appealing characteris-
tics as mentioned above, it does not take into account the con-
straints present in many real applications. Such constraints
can be imposed in the form of bounded velocity, smoothness
requirement for the path, time constraints etc. In order to
overcome this problem we employ the technique of Model
Predictive Control (MPC) [8], a control methodology devel-
oped specifically to deal with state and input constraints.
MPC is used in a level above NF in order to ensure that
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the resulting trajectory will be feasible with respect to the
constraints present. The resulting control strategy is a novel
combination of NFs as a lower level controller and MPC as
a higher level, overseeing controller that offers the best of
both worlds: safety is guaranteed by NFs, while constraint
satisfaction is handled by MPC.

We apply this control technique to problems of conflict1

avoidance in Air Traffic Control (ATC). ATC is an area where
the guaranteed safety that NFs can offer is very valuable for
Conflict Detection and Resolution (CD&R) algorithms [9],
but the lack of any provision for handling constraints has
been a major disadvantage. The proposed control scheme
can deal with this drawback of the NF method. In addition
we introduce some uncertainty in the problem to account for
the effect of the wind on the motion of aircraft. We should
note the great resemblance of the proposed scheme to the
structure of an ATC situation, where aircraft are navigating in
a self-separation airspace (agents navigating with the use of
NFs), assisted by a ground tool that seeks to optimize longer
term goals (MPC). These are what is known as Short-Term
and Mid-Term CD&R algorithms; a thorough overview and
classification of the literature in this area can be found in
[10].

The rest of the paper is organized as follows: Section II de-
scribes the NF method used along with the vehicles’ model,
followed by Section III where MPC is briefly introduced and
the control scheme outlined above is presented. Simulation
results for typical ATC scenarios are presented in Section IV.
Finally, conclusions and directions for possible extensions
are presented in Section V.

II. NAVIGATION FUNCTION CONTROL

A. Introduction

A Navigation Function produces a potential field whose
negated gradient drives the vehicle toward the destination and
away from any obstacles present in the workspace. In con-
trast to other artificial potential fields, Navigation Functions
have exactly one minimum and can provide almost global
navigation to the goal position and away from obstacles. As
Koditschek and Rimon have demonstrated [11], strict global
navigation is not possible as every obstacle introduces at
least one saddle point in the potential field, nevertheless the
sets of initial conditions that drive the system to these saddle
points are of measure zero.

1By the term conflict we define a situation where two aircraft violate re-
quired minimum separation standards, i.e. 5 nautical miles on the horizontal
plane.



B. Model of the Vehicles

The problem under consideration involvesN aircraft-
like vehicles flying inside a planar circular workspace of
radiusrworld, while avoiding collisions with each other. Each
aircraft i = 1, . . . , N is modeled as a planar nonholonomic
circular unicycle of radiusri. The position and orientation of
vehicle i areqi = [xi, yi]

T andθi respectively. The motion
of each vehicle is described by the following kinematic
equations:

q̇i =
[

ui cos θi

ui sin θi

]
(1a)

θ̇i = ωi (1b)

where ui is the longitudinal (linear) andωi the angular
velocity of vehicle i. The state of each vehicle is then
ni = [qT

i , θi]T while its input isvi = [ui, ωi]T . The vector
of the positions of all vehicles isQ =

[
qT

1 , . . . ,qT
N

]T
.

The choice of the unicycle model for the aircraft is
considered adequate for the motion planning task that we
consider in this paper. It is assumed that a lower level control,
like the Flight Management System (FMS) will be onboard
to realize the trajectories provided by the proposed control
scheme.

C. CD&R using Navigation Functions

Navigation functions in their original form are not suitable
for the control of non-holonomic, aircraft-like vehicles, as
they do not take into account the kinematic constraints of
such vehicles. Application of the original NF method as
introduced by Koditschek and Rimon [1] with a feedback
law for the control of a nonholonomic vehicle can lead
to undesired behavior, like having the vehicle rotate in
place [4], [12]. In order to overcome this difficultyDipolar
Navigation Functionshave been developed [12] which offer
a significant advantage: the integral lines of the resulting
potential field are all tangent to the desired orientation at
the goal, eliminating in most cases the need for in-place
rotation at the destination, as the vehicle is driven there with
the desired orientation. This is achieved by using the plane
whose normal vector is parallel to the desired orientation and
includes the origin as an additional artificial obstacle.

The NF used in this paper is:

Φi = Φi (qi) =
γdi + fi

((γdi + fi)k + Hnhi ·Gi · β0i)
1/k

. (2)

The above Navigation Function is constructed as explained
in detail in [13]. The functionGi = Gi (Q) reflects the
proximity to any possible collisions involving vehiclei: Gi

is zero when vehiclei participates in a conflict, i.e. when
the sphere occupied by agenti intersects with other agents’
spheres, and takes positive values away from any conflicts,
while γdi = γdi (qi) = ||qi − qid||2 is the distance from
the destination positionqid. The function fi = fi(Gi)
is necessary in a decentralized approach as it is used in
proximity situations in order to ensure thatΦi attains positive
values even when agenti has reached its destination. Thus

agenti can be temporarily driven away from its destination in
order to facilitate the convergence of neighboring agents. As
the workspace is considered spherical with radiusrworld, the
workspace bounding obstacle isβ0i = r2

world − ||qi||2 − r2
i .

The factorHnhi renders the potential field dipolar. It is
responsible for the repulsive potential created by the artificial
obstacle used to align the trajectories at the origin with the
desired orientationθdi:

Hnhi =εnh + nnhi (3)

nnhi =([cos θi sin θi] · (qi − qid))
2 (4)

whereεnh is a small positive constant. Finally,k is a positive
tuning parameter for this class of Navigation Functions.

The potential field function given above has been used
in [5] and has proven navigation properties, i.e. it provides
global convergence to the destination along with guaran-
teed collision avoidance. To better demonstrate this dipolar
property, a simple potential field generated by such an NF,
without any obstacles is presented in Figure 1. It can be
seen that the surfacex = 0 divides the workspace of radius
rworld = 100 in two parts, and forces all the integral lines
to approach the target(0, 0) parallel to they axis.
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Fig. 1. Potential Field generated by a Dipolar Navigation Function

Each vehiclei is governed by the following control law
[14]:

ui =− sgn(Pi) · Fi −
(

∂Φi

∂t
+

∣∣∣∣
∂Φi

∂t

∣∣∣∣
)

1
2Pi

(5a)

ωi =− kθi (θi − θnhi) + θ̇nhi (5b)

where

Fi =ku · ||∇iΦi||2 + kz · ||qi − qid||2
Pi =JT

Ii · ∇iΦi

JIi =JIi(θi) = [cos θi sin θi]
T

∇iΦj =
∂Φj

∂qi

∂Φi

∂t
=

∑

j 6=i

uj∇jΦT
i · JIj



MPC initialization:
Set t = 0

initialize X(t)

repeat:
initialization:

Set k = 0

Generate Θ0 = {Θ(t), . . . , Θ(t + (N − 1)T )} ∼ g(Θ)

Calculate (X(t + (i− 1)T + 1), . . . , X(t + iT )) =

= O(X(t + (i− 1)T ), Θ(t + (i− 1)T ))

(recursively ∀i ∈ {1, . . . , N})
Set C0 = L(X(t + 1), . . . , X(t + NT ))

repeat:
Set k = k + 1

Generate Θ̃ = {Θ̃(t), . . . , Θ̃(t + (N − 1)T )} ∼ g(Θ)

Calculate (X(t + (i− 1)T + 1), . . . , X(t + iT )) =

= O(X̃(t + (i− 1)T ), Θ̃(t + (i− 1)T ))

(recursively ∀i ∈ {1, . . . , N})

Set C̃ = L(X̃(t + 1), . . . , X̃(t + NT ))

Set ρk = min

(
Ck−1

g(Θk−1)

g(Θ̃)

C̃
, 1

)

Set [Θk , Ck] =

8
<
:

[Θ̃ , C̃] with probability ρk

[Θk−1 , Ck−1] with probability 1− ρk

until k = maxsteps
Find j : Ci = min{C1, . . . , Cmaxsteps}
Calculate X(t + T ) = O(X(t), Θ(t))

Set t = t + T

until |(xi(t), yi(t))− (xfinal
i , yfinal

i )| < ∆

TABLE I

MPC USING RANDOMIZED OPTIMIZATION ALGORITHM

andku, kz, kφi are positive real gains. The angleθnhi is the
angle of the gradient∇Φi:

θnhi ,
{

atan2 (sgn(pi) · Φiy, sgn(pi) · Φix) , qi 6= qid

θid, qi = qid

whereΦix = ∂Φi

∂xi
, Φiy = ∂Φi

∂yi
and pi = JT

Iid · (qi − qid),
JIid = JI(θid) is the current position vector with respect
to the destination, projected on the longitudinal axis of the
desired orientation. Consequentlysgn(pi) is equal to1 in
front of the target configuration and−1 behind it. Finally
we define:

sgn(x) ,
{

1, if x ≥ 0
−1, if x < 0

atan2(y, x) , arg (x, y) , (x, y) ∈ C .

The insight behind the above control law is to align the
vehicle’s longitudinal axis with the gradient of the potential
field and drive the vehicle along an integral line to approach
the destination with the desired orientation.

D. Stability Analysis

As shown in [14], each vehiclei described by the model
(1) under the control law (5) is asymptotically stabilized to
its targetqid, θid.

III. MODEL PREDICTIVE CONTROL
FORMULATION

One important drawback of the use of NFs is that they
cannot guarantee any constraint satisfaction on the trajectory.
In our case, this can result in agents having to stop, travel
in circles for some time, etc. While this is not a problem

in robotics, or even ground vehicle control, where the agents
can stop and start again, the situation is different for aircraft,
since physical and aerodynamic reasons impose constraints
on the minimum and maximum speed, thrust, turning radius,
etc.

To overcome this problem we employ the technique of
Model Predictive Control (MPC) [8], a control methodology
developed specifically to deal with state and input con-
straints. Denoting byT the periodicity of the controller and
by N the length of the horizon of MPC, at each time step
t, an optimization problem of horizonNT will be solved
to find the optimal inputs for the NF. In an ATC setting,
the Mid Term CR algorithm, which is centralized, does not
have very detailed information on the dynamics and all the
uncertainties involved. It is just responsible for transmitting
to the aircraft any changes of their flight plan for avoiding
potential conflicts. Thus, the MPC algorithm will view the
NFs as a black box, which will produce state trajectories for
all aircraft given their target destinations.

The state of each aircraft i at time t (as
considered by the MPC algorithm) isXi(t) =
[xi(t), yi(t), θi(t), ui(t), ωi(t)]T . Note that this notation
makes no implication on the non-holonomic kinematic
model (where ui(t), ωi(t) are outputs of the system)
but represents the ignorance of the MPC on the
details of the underlying model. The inputs of the
NF are the intermediate destinations of the aircraft
Θi(t) = [xinterm

i (t), yinterm
i (t)]. For ease of notation, we

introduce the variablesX(t) = [X1(t), . . . , Xn(t)] and
Θ = [Θ1(t), . . . , Θn(t)], where n denotes the number of
aircraft. The NF is then viewed as an oracleO(X(t),Θ(t))
that, given the current aircraft state and the intermediate
destinations, returns the state trajectory for the nextT steps
(X(t + 1), . . . ,X(t + T )). The state evolution in the NFs
can be influenced by uncertainty (in our case the wind
speed). The MPC algorithm will try to minimize some cost
function L(X(t + 1), . . . ,X(t + NT )) ∈ R , subject to
constraintsX(τ) ∈ X, ∀τ ∈ {t, t + T, . . . , t + NT}. The
cost function reflects some long-term goals for the aircraft
(e.g. reach their final destination as fast as possible, avoid
turning too often, etc.). The constraints reflect operational
constraints of the aircraft.

The finite horizon optimization problem described to be
solved at each timet is a non-convex problem. Thus, the
problem of finding the exact optimal value is computation-
ally intractable. To overcome this difficulty we use ran-
domized optimization algorithms. Randomized optimization
algorithms are a very promising method in this context,
since they can inherently deal with the complexity of the
problem, with reasonable computational workload. There are
several methods falling into this category, such as genetic
algorithms [15], simulated annealing [16], etc. While all
seem to work with more or less the same efficiency, only
few provide guarantees for convergence to the optimum. This
is the reason that we chose the method described in [17].
This method is a variation of simulated annealing based on
Markov Chain Monte Carlo (MCMC) that works both for



deterministic and expected value criteria.
Of course, since our control has a receding horizon policy,

at every timet, the optimal inputs for the time instants
t, t+T, . . . , t+(N−1)T will be calculated, but only the first
will be applied. Then the control law will be recalculated at
time t + T for the time instantst + T, . . . , t + NT , etc. Due
to uncertainties and conflict resolution maneuvers, aircraft
might not arrive at their exact final destination, thus we
will consider that aircraft reach their destination when the
Euclidean distance between their current position and their
final is less than some tolerance value∆.

Our algorithm is summarized in Table I. Note that the
proposal distribution from which random samples are ex-
tracted is very important for the algorithm to approximate the
optimum inputs. Also important to note is that the dimension
of the search space grows linearly in the prediction horizon
N , which makes the optimization problem harder to solve
for long prediction horizons. The proposed combination of
MPC and NFs retains the safety guarantees (as at all times
the NF potential field is repulsive with respect to neighboring
aircraft), while handling constraints and cost factors through
the optimization performed by MPC.

IV. SIMULATION SETTING AND RESULTS

A. Simulation Setting

In our simulation setting, we consider several aircraft in
level flight converging to the same point (0,0) that have to be
deconflicted. A typical configuration is presented in Figure
2 for three aircraft.
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Fig. 2. Configuration for 3 aircraft encounter.

For all our simulations, we will assume that the aircraft are
of type Airbus A321, flying at 33000ft, a typical cruising al-
titude for commercial flights. [18] suggests that the airspeed
at this altitude can only vary in the region[366, 540] knots,
with a nominal value of454 knots. We will enforce these
constraints on our controller.

Regarding the uncertainty, we will only consider the wind
speed as source of uncertainty. Wind speed (in general)
can be modeled as a sum of two components: a nominal,
deterministic component (available through meteorological
forecasts) and a stochastic component, representing devia-
tions from the nominal. Since the forecasts are available
prior to the flights, flight plans are calculated taking them
into account, so for simplicity reasons, we set the forecasted
wind speed equal to zero. The stochastic part of the wind will

be generated by a Gaussian distribution with zero mean and
standard deviationσ = 5.17m/s [19]. Its strong correlation
structure [20] implies that it cannot be represented as white
noise; instead it is more accurate to approximate it by a
constant random value for each simulation.

B. Control using Navigation Functions

First, we try to use the NFs method to deconflict this
situation, in the case where uncertainty is set to zero, without
applying MPC. Indeed, NFs manage to resolve the situation,
with the aircraft converging to their destinations, without
any conflicts arising. Their inability to respect system’s
constraints is, however, obvious, as indicated in Figure 3.
The aircraft have a speed that is constantly decreasing and
converges asymptotically to zero, as the aircraft approach
their destination.
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Fig. 3. Aircraft speed for the solution produced by NFs

This problem is inherent in Navigation Functions, since
the speed of the agents heavily depends on the distance to
their final destination. The situation becomes even worse
when uncertainty is introduced. Since the trajectories of the
aircraft depend only on the geometry of the situation in a
deterministic manner, the only way for the NFs to correct
the deviation because of the wind is to command different
control inputs. The problem is that since the uncertainty is
applied on the output trajectory, the solution converges to
a different point, where the speed commanded by the NFs
added to the wind speed equal zero. Thus, depending on the
wind speed and its direction, some aircraft may never reach
their destination.

C. MPC with NFs

As already discussed, the search space for the randomized
optimization algorithm grows with the prediction horizon. On
the other hand, we are interested in a fast implementation,
if the control scheme is to be applied in ATC. To reduce
the computational workload, one can do several things, like
shortening the horizon, or calculating only one input for
all times {t, t + T, . . . , t + (N − 1)T}. The first would
clearly reduce the advantage of the MPC approach, causing
the system to enter states where no feasible solutions are
available, while the second approach would introduce much
conservatism in the controller.

To reduce conservatism on the second approach, we intro-
duce a strategy for the optimization algorithm, where only



the input for timet will be optimized. Then, at timet + T ,
the new input (intermediate way point) for the predictive
controller will be the same as that of timet, adding the
distance covered by each aircraft, etc. until the input for time
t + (N − 1)T . In this fashion, the controller will have taken
into account the uncertainty encountered by the aircraft and
will constantly try to keep the target at a constant distance,
forcing the NFs to command airspeeds close in the desired
range.

Exploiting the structure of the problem, it can be observed
that a distance to the target around100nm produces a
speed for the aircraft matching the nominal cruising speed
for our altitude. Thus, the search space will concentrate
around points with a distance close to this value. This is
done by sampling from a Gaussian with mean100nm and
standard deviation10nm. Then, the intermediate waypoint is
determined by uniformly sampling for an angle in[−π

2 , π
2 ]

around the line segment joining the current position of the
aircraft and its final destination.

D. Results

One can optimize over several costs in the optimization
problem over several horizons and discretization steps. We
choseT = 5 minutes,N = 4 and a cost function that
tries to minimize the sum of the remaining distance to final
destination at the end of the horizon for all aircraft:

L =
∑

i

D(i, t + NT ). (6)

To evaluate the performance of our algorithm, we simulate
each encounter using 1000 Monte Carlo runs. The random-
ized optimization algorithm will optimize at each time step
over 1000 random extractions from the search space.

1) 4 aircraft encounter: As a first example we will
consider a situation where 4 aircraft are following paths
that are converging at the same point. Using all the settings
mentioned before, our control scheme resolves the situation
in all 1000 runs, while respecting the speed constraints we
impose on the aircraft airspeed (i.e. speed remains within
[366, 540] knots). Figure 4 shows the mean speed (over all
1000 Monte Carlo runs), as well as the highest and lowest
airspeeds observed for every aircraft at all times. The bounds
on the speed are also drawn for convenience. The average
running time for each simulation is200 sec in a dual-core
Pentium3.2GHz, while the peak memory usage is around
110MB RAM. This time is many times faster than real time
(which would be66 min for this situation).

One can observe that the speed of the aircraft is very
well regulated, with a mean value very close to the desired
nominal airspeed for this altitude. Another interesting aspect
is the minimum separation between all aircraft flying in the
airspace. Simulating the situation with the NFs (without the
MPC approach) for the deterministic case leads to a mini-
mum separation of22 nm. This is obviously quite conserva-
tive, since conflicts only happen when this separation drops
below 5 nm. Our approach shows some major improvement
in this aspect, resulting in minimum separations between
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Fig. 4. Speed evolution with time for a conflicting situation of 4 aircraft

11.5 and16 nm in all simulations. Thus, despite the presence
of uncertainty, the aircraft can fly closer to one another,
while comfortably respecting the safety separation criteria.
The solution generated by the algorithm for a particular
wind speed is shown in Figure 6, while NFs generate the
trajectories shown in Figure 5 for the case where wind is
not present.
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2) 6 aircraft encounter:We try to present the algorithm
with an even more challenging problem: a situation where 6
aircraft are converging to the same point. Applying the same
configuration for the NFs approach (for the deterministic case
again), the trajectories one would get are shown in Figure
7. The solution demands all aircraft to travel in a circle of
radius around190 nm until they reach their destinations.
Once again, the constraints are violated very often and the
distance traveled to reach the goal is much larger than direct
routing.
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The MPC approach can include the uncertainty modeling
and once again can resolve the situation without problems.
We present the mean speed (over all 1000 Monte Carlo runs),



as well as the highest and lowest airspeeds observed for every
aircraft at all times in Figure 9. The speed for all aircraft is
again very well regulated, having a mean value very close
to the one desired at this altitude. The average running time
in this case is around1500 sec in the same PC, while the
peak memory usage is around130MB RAM. The higher
computation time needed comes as no surprise, since the
feasible solutions for the search space are much fewer in
this case. One should note though, that the time needed is
still more than 3 times faster than real flight time (which
would be85 min for this situation).

The solution generated by the algorithm for a particular
extraction of the wind speed is shown in Figure 8. Aircraft
now can travel smaller distances, while conflict avoidance
and speed constraints are respected. This conservativeness
reduction can help ATC to increase the capacity of the
airspace, as the proposed scheme can handle much more
complex situations.
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Fig. 9. Speed evolution with time for a conflicting situation of 6 aircraft

V. CONCLUSIONS AND FUTURE WORK

A novel control scheme combining the methods of Nav-
igation Functions and Model Predictive Control has been
presented. This control scheme exploits the ability of Model
Predictive Control to handle constraints, while preserving
the collision avoidance properties of Navigation Functions.
We applied this approach to an Air Traffic Control problem,
where uncertainty plays a great role in the system evolution
and safety, while physical constraints have to be respected.
The proposed scheme outperforms the existing Navigation
Functions methods, respecting the system constraints, while
reducing conservatism and optimizing over a desired cost
for the system. Simulation results suggest that the method is
robust under wind uncertainties.

Possible directions for future work include embedding
more sources of uncertainty in the system (like radar mea-
surement errors) and using the inputs for the Flight Man-
agement System of the aircraft in a more realistic Air
Traffic Control simulator. Finally, it would be of interest to
investigate whether using the analytic form of Navigation
Functions for the MPC approach (instead of assuming black-
box optimization) could lead to computationally tractable
problems and theoretical guarantees on the convergence of
the overall scheme.
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